Reducing Subspaces of Some Multiplication Operators on the Bergman Space over Polydisk
نویسندگان
چکیده
منابع مشابه
Multiplication Operators on the Bergman Space via Analytic Continuation
ABSTRACT. In this paper, using the group-like property of local inverses of a finite Blaschke product φ, we will show that the largest C-algebra in the commutant of the multiplication operator Mφ by φ on the Bergman space is finite dimensional, and its dimension equals the number of connected components of the Riemann surface of φ ◦ φ over the unit disk. If the order of the Blaschke product φ i...
متن کاملCompact Hankel Operators on the Hardy Space of the Polydisk
We show that a big Hankel operator on the standard Hardy space of the polydisk D, n > 1, cannot be compact unless it is the zero operator. We also show that this result can be generalized to certain Hankel operators defined on Hardy-Sobolev spaces of the polydisk.
متن کاملMultiplication operators on Banach modules over spectrally separable algebras
Let $mathcal{A}$ be a commutative Banach algebra and $mathscr{X}$ be a left Banach $mathcal{A}$-module. We study the set ${rm Dec}_{mathcal{A}}(mathscr{X})$ of all elements in $mathcal{A}$ which induce a decomposable multiplication operator on $mathscr{X}$. In the case $mathscr{X}=mathcal{A}$, ${rm Dec}_{mathcal{A}}(mathcal{A})$ is the well-known Apostol algebra of $mathcal{A}$. We s...
متن کاملPositive Toeplitz Operators on the Bergman Space
In this paper we find conditions on the existence of bounded linear operators A on the Bergman space La(D) such that ATφA ≥ Sψ and ATφA ≥ Tφ where Tφ is a positive Toeplitz operator on L 2 a(D) and Sψ is a self-adjoint little Hankel operator on La(D) with symbols φ, ψ ∈ L∞(D) respectively. Also we show that if Tφ is a non-negative Toeplitz operator then there exists a rank one operator R1 on L ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2015
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2015/209307